Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry

نویسندگان

  • TETSU KOGISO
  • MARC M. HIRSCHMANN
  • PETER W. REINERS
چکیده

The upper mantle is widely considered to be heterogeneous, possibly comprising a “marble-cake” mixture of heterogeneous domains in a relatively well-mixed matrix. The extent to which such domains are capable of producing and expelling melts with characteristic geochemical signatures upon partial melting, rather than equilibrating diffusively with surrounding peridotite, is a critical question for the origin of ocean island basalts (OIB) and mantle heterogeneity, but is poorly constrained. Central to this problem is the characteristic length scale of heterogeneous domains. If radiogenic osmium signatures in OIB are derived from discrete domains, then sub-linear correlations between Os isotopes and other geochemical indices, suggesting melt-melt mixing, may be used to constrain the length scales of these domains. These constraints arise because partial melts of geochemically distinct domains must segregate from their sources without significant equilibration with surrounding peridotite. Segregation of partial melts from such domains in upwelling mantle is promoted by compaction of the domain mineral matrix, and must occur faster than diffusive equilibration between the domain and its surroundings. Our calculations show that the diffusive equilibration time depends on the ratios of partition and diffusion coefficients of the partial melt and surrounding peridotite. Comparison of time scales between diffusion and melt segregation shows that segregation is more rapid than diffusive equilibration for Os, Sr, Pb, and Nd isotopes if the body widths are greater than tens of centimeter to several meters, depending on the aspect ratio of the bodies, on the melt fraction at which melt becomes interconnected in the bodies, and on the diffusivity in the solid. However, because Fe-Mg exchange occurs significantly more rapidly than equilibration of these isotopes under solid-state and partially molten conditions, it is possible that some domains can produce melts with Fe/Mg ratios reflecting that of the surrounding mantle but retaining isotopic signatures of heterogeneous domains. Although more refined estimates on the rates of, and controls on, Os mobility are needed, our preliminary analysis shows that heterogeneous domains large enough to remain compositionally distinct in the mantle (as solids) for 10 yr in a marble-cake mantle, can produce and expel partial melts faster than they equilibrate with surrounding peridotite. Copyright © 2004 Elsevier Ltd

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detailed Geochemistry and K-Ar Geochronology of the Metamorphic Sole Rocks and Their Mafic Dykes from the Mersin Ophiolite, Southern Turkey

The metamorphic sole rocks at the base of mantle peridotites from the Mersin ophiolite consist of amphibolites and metasedimentary lithologies. Mineral parageneses in the metamorphic sole rocks exhibit amphibolite and greenschist facies assemblages. Geothermobarometric studies based on mineral assemblages and chemical compositions of minerals indicate that average metamorphic temperature during...

متن کامل

The statistical upper mantle assemblage

A fundamental challenge in modern mantle geochemistry is to link geochemical data with geological and geophysical observations. Most of the early geochemical models involved a layered mantle and the concept of geochemical reservoirs. Indeed, the two layer mantle model has been implicit in almost all geochemical literature and the provenance of oceanic island basalt (OIB) and mid-ocean ridge bas...

متن کامل

Numerical models, geochemistry and the zero-paradox noble-gas mantle.

Numerical models of whole-mantle convection demonstrate that degassing of the mantle is an inefficient process, resulting in ca. 50% of the (40)Ar being degassed from the mantle system. In this sense the numerical simulations are consistent with the (40)Ar mass balance between the atmosphere and mantle reservoir. These models, however, are unable to preserve the large-scale heterogeneity predic...

متن کامل

Petrology, geochemistry, and petrogenesis of mafic dykes from the Kermanshah Ophiolite in Sahneh-Harsin area of Western Iran

The Kermanshah ophiolite complex is a part of the Mediterranean–Zagros–Oman Tethyan ophiolites, located in the structural–tectonic zone of western Iran in the northern part of the Zagros main thrust. Doleritic sheeted dykes are well exposed within the ophiolite in the south of Sahneh. These dykes contain high MgO, Na2O, low TiO2 (2O5, and K2O contents, and high FeOt/MgO and LILE/HFSE ratios. Th...

متن کامل

Cooling of the Earth: A parameterized convection study of whole versus layered models

[1] Compositionally layered mantle models have often been invoked in order to explain the geochemistry observed at the Earth’s surface, specifically the discrepancy between ocean island basalt and mid-ocean ridge basalt compositions. One disadvantage of layered models is the reduction in cooling efficiency compared to whole-mantle convection as a direct result of the insulating nature of the th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003